Case study: publishing an interactive, reproducible workflow using Frictionless data standards

Varvara Efremova^a, James Wilmot^a, Prof. Pall Thordarson^{a,b}

^a UNSW School of Chemistry, The Australian Centre for Nanomedicine, ^b The UNSW RNA Institute

Closing the gap between analysis and publication

To achieve fully FAIR web publication of interactive workflows, we developed a set of tools alongside a workflow packaging specification.

Our tooling allows users to run and publish fully FAIR workflows as embeddable web components.

Technical details

We focused on a low-code approach, making use of existing industry-standard tools whenever possible:

- Frictionless Data specification
- Docker containerisation for execution environments
- Git repositories for history tracking
- GitHub for analysis publication.

Datakits & Frictionless Data

In order to encapsulate analysis workflows, we developed "datakits" - an open-source JSON-based data standard extending the Frictionless Data specification. (See frictionlessdata.io

A datakit describes:

- the analysis algorithm and its execution environment
- saved run states from algorithm executions
- input and output data, along with configurable options
- visualisations of data, including graph and table specifications
- user interface definitions.

Publishing a datakit - binding constant analysis

Fork Fork the Open-datakit/bindfit-datakit repository to preserve provenance

Ingest data

observed chemical shifts were then plotted, and the data obtained from these plots were analyzed using the bind-fit application to fit the binding model (Figure 6, see also the Supporting Information for details).^{44–46} 1.25

Our command line tool is written in Python. Embeddable web components are implemented in SolidJS with solid-element, making them usable on any website.

Proof of concept: Bindfit

In 2016, we released Bindfit — a web application for interactive analysis and publication of binding constant calculations. Every Bindfit workflow can be saved and published via a link with a unique identifier.

Since 2016, it has gained wide adoption with over 70,000 sessions and nearly 500 citations on Scopus.

1. Load data and automatically describe schema dk load data data/input.csv

Configure algorithm

- 1. Choose fit model dk set model nmr1to2
- 2. Set initial parameter guesses dk set params k11.init 1.44

Run algorithm

dk run

Visualise

Visualise facets of the analysis

- 1. View fit graph
- dk view fitGraph
- 2. View calculated parameter table dk show params

Publish

1. Create a release of your datakit workflow and mint a DOI with zenodo

The mole fraction curve derived from the NMR shift data was fitted to a 1:2 model, affording the calculated binding constants $K_1 = 1.44 \text{ M}^{-1}$ and $K2 = 0.24 \text{ M}^{-1}$. The fact that the first binding constant K_1 is larger than K_2 suggests that cooperativity in **1-TFA** to form 1-TFA2 is unlikely.

	Name	Optimised value	Standard error
	K ₁₁	1.4389 M ⁻¹	2.3132 %
	K ₁₂	0.2367 M ⁻¹	1.7358 %

Figure 7 Calculated binding constant values Export CSV

When comparing these binding constants K₁ and K₂ with pK_{BHX} of N-methylpyrazole (1.84), the binding affinity of compound **1** is lower, but it falls within the range of medium basicity Considering 1-TFA₂ as the major compound in the THE/TEA = 50.50

Figure 1: Embeddable workflows in an example publication

Example of a published analysis in Bindfit (Takemasa & Nozaki 2024) app.supramolecular.org/bindfit/view/ b24c676b-5fc5-4774-8caa-9dc1267ee771

The opendatakit project

Currently released:

- a binding constant analysis tool packaged as a datakit
- a command line tool for modifying and running datakits
- documentation for running and implementing custom datakits.

In the pipeline:

- releasing embeddable web components for datakit visualisations
- developing a web application with execution backend
- handling domain-specific metadata (Please come to our BoF! "Data and metadata

Further reference

Bindfit datakit Popen-datakit/bindfit-datakit standards for web publication of research data")

 providing consultancy on datakit construction and visualisations.

If you're interested in building datakits or collaborating, please get in touch! hello@opendatakit.io

